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The concept of a law of the wall and a velocity defect law which are related to 
each other through a common velocity scale and a semilogarithmic velocity 
profile in the region where they overlap, can be applied successfully to turbulent 
boundary layers with suction or injection. For turbulent boundary layers at 
moderate suction rates the velocity scale is proportional to u,2/vo. For layers at 
arbitrary suction or blowing rates the velocity scale, which has been determined 
empirically, is proportional to (u, + 9vo). 

1. Introduction 
Since the theory of turbulent boundary-layer flow is still rather incomplete, 

i t  is impossible to provide a quantitative description of the mean flow which does 
not contain a large degree of empiricism. In  the present state of the art, much of 
the available information centres around two similarity laws: the ‘law of the 
wall’ and the ‘velocity defect law ’. The law of the wall is valid in the thin ‘inner 
layer ’ next to the wall, whereas the velocity defect law describes the flow in the 
broad ‘outer layer ’. 

In  this paper similarity laws for turbulent boundary layers with suction or 
injection are given. The applicability of these laws will be determined by com- 
parison with experimental data. The analysis is restricted to incompressible 
turbulent boundary layers in steady two-dimensional flow. Mass transfer occurs 
normal to the porous surface only. The main part of the theory covers boundary 
layers at ‘moderate’ suction rates (0.04 < -vo/u, < 0.10). The similarity laws 
for these boundary layers are based on a generalization of the phenomenological 
description of turbulent boundary-layer flow as given by Clauser (1956), Rotta 
(1962), Townsend (1956), Coles (1956) and others. A central feature of this 
description is the semi-logarithmic mean velocity profile in the region of overlap 
between the wall law and the velocity defect law. It will be seen that this feature 
can be retained successfully for the description of sucked or blown turbulent 
boundary layers. The approach presented here therefore deviates from the one 
taken in almost all literature on the subject (Dorrance & Dore 1954; Rubesin 
1954; Clarke, Menkes & Libby 1955; Mickley & Davis 1957; Black & Sarnecki 
1958; Sarnecki 1959; Cornish 1960; Townsend 1961; Stevenson 1963a, b) .  In 
these papers, mixing-length theory is applied to turbulent boundary-layer flow 
with suction or injection. In  the resulting expression for the mean velocity 
profile a squared logarithm occurs, so that it has been labelled the ‘bi-logarithmic 
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law’. In  the author’s opinion this law conflicts with the concept of related 
similarity laws for the two regions in turbulent boundary layers. In  only one 
reference (Mickley & Smith 1963) is the subject investigated in a manner similar 
to the one presented here. In  a comment on Mickley & Smith’s paper, the author 
has summarized some of the results of his investigation (Tennekes 1964a). 

It seems suitable to introduce the analysis by giving a short review of the 
pertinent features of the phenomenological description of turbulent boundary- 
layer flow along impermeable surfaces. The law of the wall and the velocity defect 
law are, respectively (Prandtl 1935; Coles 1956; Townsend 1956; Clauser 1956; 
Rotta 1962) 

In  these equations, Ul is the mean velocity within the boundary layer, U, is the 
mainstream velocity, u, is the friction velocity (pu: = r,), k is a length scale for 
the surface roughness and II is defined by (Rotta 1962) 

The velocity defect law is valid only for boundary layers with constant value of 
II. These layers are called ‘equilibrium layers’. Postulating that the law of the 
wall and the velocity defect law will overlap in a finite region of the boundary 
layer, it follows that the mean velocity profile is semi-logarithmic in this region. 
The formal derivation of this feature is due to Millikan (1938) and runs as follows. 
Differentiation of (1) and (2) with respect to x2 yields, with some rearrangement, 

The expressions a t  the right-hand side of (4) and (5) should be equal to each other 
in the region of overlap. Since they have no variable in common, xZu,Iv being 
formally independent of xa/& they should be constant. This implies that 

Since the functions f and g have no common parameters, C, is a ‘universal 
constant’. Its value has to be determined by experiment. Clauser (1954, 1956) 
uses C,, = 2.44; in this paper C, = 2.3 will be used to obtain agreement with data 
of blown and sucked boundary layers. 

Integration of (6) and subsequent non-dimensionalization according to the law 
of the wall and the velocity defect law respectively yield the well-known semi- 
logarithmic mean velocity profile 
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We now return to (6), which may be interpreted as follows. The slope of the semi- 
logarithmic region of the velocity profile in a semi-logarithmic plot has the 
dimensions of a velocity, i.e. 

z,(aO,/ax,) = aO,/a(lnz,) = w*. ( 9 )  

The slope w* is called the ‘logarithmic velocity scale’ (Tennekes 1964a) and is 
defined by ( 9 ) .  Comparison of ( 6 )  and ( 9 )  shows that for boundary layers without 
suction or blowing the logarithmic velocity scale is proportional to the friction 
velocity 

Apparently, it is merely a formalism to introduce w* for boundary-layer flow 
along impermeable walls. However, it  will be seen that for sucked end blown 
layers the introduction of w* is very useful. 

In  the law of the wall and in the velocity defect law the mean velocity ol is 
non-dimensionalized by the same variable, i.e. u,. This common velocity scale 
(instead of u,, w* may be used) is the variable that relates the similarity laws for 
the two distinct regions of a turbulent boundary layer. To quote Clauser: ‘The 
primary variable which interconnects these two mechanisms (i.e. the outer and 
the inner layer) is the wall shear T~ or its equivalent, the friction velocity u7’ 
(Clauser 1956, p. 27). For boundary layers with suction or injection, u, is not a 
suitable velocity scale, but the concept of a joint velocity scale for the two 
similarity laws will be retained. This is of direct relevance to the velocity profile, 
since without a joint velocity scale no region of overlap and hence no semi- 
logarithmic velocity profile in the region of overlap can exist. It will be seen in 
the sections to  follow that these concepts (with w* as the appropriate velocity 
scale) provide for a simple description of turbulent boundary-layer flow with 
suction or injection. 

(10 )  w* = C,U, = 2;.3u,. 

2. The law of the wall for turbulent boundary layers at moderate 
suction rates 

For turbulent boundary layers with suction a practical way to derive a wall 
law is to consider the flow in the viscous sublayer. The mean velocity profile in 
the sublayer is obtained directly from the equations of motion. In  the approxi- 
mation used for the inner layer (Black & Sarnecki 1958) these equations reduce 
for the viscous sublayer to 

v0(aU1/8z2) = v ( a q a z ; ) .  ( 1 1 )  

vo Ul /u: = exp ( vo x2/v)  - 1 .  ( 12 )  

This equation may be integrated twice to obtain the velocity profile 

This is equivalent to the velocity distribution given by Griffith & Meredith (1936) 
for laminar asymptotic layers. 

The velocity profiles in the viscous sublayers of all turbulent boundary layers 
with suction or injection apparently coincide if they are plotted as 

v,e,/u: = F(v,z,/v). (13)  
44-2 



692 H .  Tennekes 

The similarity of the sublayer flow according to (13) is surprisingly universal 
since it is independent of the ‘suction ratio ’ - vo/u,. Since a similarity law for the 
flow in the inner layer should at least provide similarity of the flow in the viscous 
sublayer (which is the lowermost part of the inner layer), (13) might be an 
appropriate law of the wall for boundary layers on a permeable surface. 

Equation (13)’ which will be called the ‘limit law of the wall’ for reasons set 
out later, is not a suitable similarity law at other than moderate suction rates. 
This may be shown as follows. Expanding (12) into a series, we obtain 

or 

It is clear that for all cases in which at the outer edge of the sublayer vox2/u < 1, 
the quadratic terms in (14) and (15) may be neglected. Sublayer similarity 
according to (13) then has no advantage over similarity according to the law of the 
wall for boundary layers on impervious surfaces (1). Experimental evidence (to 
be discussed presently) has shown that only for boundary layers at ‘moderate’ 
suction rates (0.04 < -vo/u, < 0.10 approximately) the viscous sublayer is 
sufficiently thick to justify the use of (13) as a similarity law. In  this context it 
should be noticed that (13) becomes trivial for wo -+ 0, so that the limit law of the 
wall in any case is unlikely to be suitable at very small suction or blowing rates. 

Velocity profiles obtained in some experiments with sucked turbulent boundary 
layers have been plotted in figure 1. All layers concerned are asymptotic layers 
in zero pressure gradient. For these layers the momentum thickness is constant, 
so that the momentum integral equation reduces to vo Uo = - u: (see 0 3). This 
provides a relatively easy way to obtain an accurate value ofu,. Since the state of 
equilibrium of a boundary layer is supposed to have no effect on the flow in the 
inner layer (Clauser 1956)’ the results presented here are supposed to possess 
a wider validity than for asymptotic layers only. The velocity profiles in figure 1 
show the following main characteristics. First, the viscous sublayers of two 
asymptotic layers on a smooth sintered-bronze surface (Kay 1948) are rather 
thick, extending well beyond - wox2/u = 1 and coinciding with the theoretical 
curve according to (12). For these layers the limit law of the wall, (13), is 
apparently a suitable similarity law. Second, it should be noticed that the 
velocity profiles in figure 1 exhibit a more or less clearly distinguishable semi- 
logarithmic region; the slope of this region is approximately the same for all 
layers concerned. This is considered to be an essential property of a similarity 
law; the experimental evidence therefore agrees with the proposed limit law of 
the wall. 

The limit law of the wall has been investigated further by means of a series of 
experiments carried out by the author at the Aeronautical Engineering Depart- 
ment of the Technological University of Delft. For these experiments, a flat 
plate with a permeable surface (filter paper over narrow-mesh perforated sheet) 
was installed in the Department’s Low Turbulence Wind Tunnel. Details of the 
experimental arrangement and of the data may be found in the author’s 
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dissertation (Tennekes 1964 b) . Fourteen boundary layers flowing along the porous 
surface were subjected to uniform suction in zero pressure gradient. Velocity 
traverses were made at 100 mm intervals in streamwise direction. The resulting 
velocity profiles were plotted according to the limit law of the wall (u, was deter- 

1.1 I I I I I I I I 1 

0.6 I I I I I I I I J 
1 2 5 10 2 5 102 2 5 103 

-vOX2/V 
FIGURE 1. The limit law ofthewall. Kay (1948) : V , - v o / ~ ,  = 0.0548; A, -ff& = 0.0576. 
Dutton (1958): 0, -vo/u, = 0.0665; 0 ,  -vo/us = 0.0854. Tennekes (1964b): -I-, 
-vo/u7 = 0.0665 (Run 2-429, x1 = 882 nun; see also figure 5) .  

0.1 ' I I I I I 

1 2 5 10 2 5 10' 

- VOX,/V 

FIGURE 2. Velocity profiles in the co-ordinates of the limit law of the wall. Temekes 
(1964b): Run 3-081; -vo/Uo = 0.00081, -vo/v = 2 . 8 7 ~  10Sm-l. 

21  5 1  

(nun) - 100(vo/u,) - 100(vo/U,) 
+ 163 1.61 i? 563 1.76 
x 261 1-60 ~ 6 6 4  1.79 
a 362 1.65 A763 1.81 
D 463 1.71 0 862 1.86 

mined from the momentum integral equation) ; six representative cases are shown 
in figures 2 to 7. In  these plots semi-logarithmic regions can be discerned; in most 
cases the slope of the semi-logarithmic region is equal to the slope of the profiles 
in figure 1. This evidence substantiates the validity of the limit law of the wall 
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for boundary layers with sufficient suction. It is observed that the velocity profiles 
plotted in figures 2 and 7 exhibit a somewhat abnormal character. For the 
boundary layer presented in figure 2 the suction ratio ( - vo/u7) is too small for 

i i 

Slope : 
0.9 //equation (16) ,-=- - 

0.5 1 / 2 5 10 2 3 102 

- VO%/V 
FIGURE 3. Velocity profiles in the co-ordinates of the limit law of the wall. Tennekes 
(19646): Run 2-292; -vo/Uo = 0.00292, -vo/v = 11.3 x 103m-l. 

21 X1 

(mm) - 100(vo/u,) (mm) - 1oo(vo/u7) 
+ 182 5.06 0584 5.09 
x 280 5-05 v685 5.10 
4 380 5.06 A785 5.10 
D 482 5.08 0882 5.11 
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N C  0.9 2 
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1 Sublayer: 
equation (12) 

2 5 10 2 5 10' 

-*o%/V 

FIGURE 4. Velocity profiles in the co-ordinates of the limit law of the wall. Tennekes 
(1964b): Run 2-382; -vo/Uo = 0.00382, -vo/v = 10.1 x lo3 m-l. 

21 21 

(mm) - 10O(Vo/%) (mm) - 100(v0/u7) 

x 278 6.18 v675 6-12 
a 380 6.07 A776 6.13 
D 480 6.07 0 876 6.13 
0577 6.10 
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the limit law of the wall to be valid. For the layer in figure 7 the suction ratio is 
toolarge to maintainturbulent flow. Thislayerisexpectedto bein the process of re- 
versal (backward' transition ') to laminar flow (cf. Favre, Dumas & Verollet 1961). 
The range of validity of the limit law of the wall will be discussed further in 5 4. 

The formal expression for the limit law of the wall (13) suggests that the 
appropriate velocity scale for turbulent boundary layers at moderate suction 
rates is proportional to u:/vo. The experimental evidence presented in figures 1 
to 7 shows that the logarithmic velocity scale is 

This relation is derived empirically by measuring the average slope of the semi- 
logarithmic region of the velocity profiles in figures 1 to 7. Straight lines con- 
forming to (16) have been drawn in these figures to facilitate an appraisal of the 
agreement between the theory and the experimental data. 

W* = - O.OS(U: /V~) .  (16) 

1.1 1 I I I I I I 1 

I I I I I I 
1 2 5 10 2 5 1 o2 0.6 1 

- VO%/V 
FIGURE 5. Velocity profiles in the co-ordinates of the limit law of the wall. Tennekes 
(196421): Run 2-429; -vO/Uo = 0 * 0 0 4 2 9 , - ~ 0 / ~  = 1 1 . 5 ~  loam-'. 

21 $1 

(mm) . - 100(~0/%) (mm) - 10O(Vo/%) 
+ 181 6.70 0 5 8 5  6.57 
x 280 6.63 ~ 6 8 2  6-56 
a 380 6.59 A785 6.55 
D 482 6.58 0 8 8 2  6.55 

Evidence obtained in the course of the present investigation has shown that 
vo/uT and kvo/v are parameters in the limit law of the wall. The complete formal 
expression for this law therefore should be written as 

The two parameters cause a parallel shift of the semi-logarithmic velocity profile. 
The effect of - vo/u, is rather pronounced. For boundary-layer flow along smooth 
porous surfaces the following tentative formula describes the semi-logarithmic 
velocity profile (Tennekes 1964 b) 

where A(kvo/v) is a function, as yet undetermined, of the parameter kvo/v. 
-vo cl/u: = 0*06ln( - v o x 2 / v ) -  ll(vo/u7)+A(kvo/v), (18) 
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1 2 5 10 2 5 10' 
- VOX,/V 

FIGURE 6. Velocity profles in the co-ordinates of the limit law of the wall. Tennekes 
(19646): Run 2-484; -wo/Uo = 0.00484, -vo/v = 1 2 . 9 ~  103m-l. 

21 21 

(mm) - 100(vo/%) (mm) - 1 O O ( ~ , / U , )  
+ 182 7.25 0581 7.06 
x 282 7.15 ~ 6 7 9  7.05 
a 382 7.10 A775 7.04 
D 481 7-08 0 880 7.03 

0.6 I I 1 I I I 1 1 1 
1 2 5 10 2 5 102 2 5 103 

- VOXZ/V 

FIGURE 7. Velocity profiles in the co-ordinates of the limit law of the wall. Tennekes 
(1964b): Run 1-580; -vo/Uo = 0.00580, -vo/v = 15.5 x lo3 m-l. 

21 X1 

- 100(vo/%) (-1 - 100(vo/%) 
+ 231 8-50 0631 8.16 
x 332 8-31 ~ 7 3 0  8.14 
4 435 8.25 A832 8.10 
D 533 8.20 c 930 8.08 
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3. The velocity defect law for turbulent boundary layers at moderate 
suction rates 

With the information obtained in 5 2 it  is not a difficult task to formulate a 
velocity defect law for turbulent boundary layers with moderate suction. This 
‘limit velocity defect law’ should have the same velocity scale as the limit law 
of the wall; in the region of overlap with the latter law the velocity profile should 
be semi-logarithmic. A region with these characteristics has been observed in 
most experimental velocity profiles, so that the following expression for the limit 
velocity defect law can be put forward with some confidence 

vo(V1- Uo)/u: = G(x2/&) .  (19) 

The scaling with Uo and S is characteristic for a deficiency law, cf. (2). 
The limit velocity defect law will bevalidonly for boundary layersin equilibrium 

conditions (cf. Clauser 1956). A simple equilibrium layer, about which rather 
many experimental data are known, is the asymptotic layer in zero pressure 
gradient. For this layer, the growth due to skin friction is exactly compensated 
by suction, so that its thickness remains constant and all derivatives with 
respect to x1 vanish. The remaining part of this section will be mainly devoted 
to a comparison of theory and experiments for asymptotic layers. No reliable 
experimental data exist about other sucked or blown equilibrium layers. 

The relation between (19) and the equations of motion for asymptotic layers 
will now be investigated. This equation reads 

v0(di7,/dx2) = a( - -)/ax2. 

This equation is valid for the inviscid flow in the outer layer only (viscous shear 
stress is negligible). Integration of (20) yields 

- v o ~ , - v o u o  = -u1u2. 

The integration has been carried out from the outer edge of the layer inwards. 
It is not allowable to integrate from z2 = 0 outwards since (20) is not valid in the 
direct vicinity of the wall. Now a state of equilibrium will be possible only if 
simultaneous similarity of the mean velocity profile and the Reynolds stress 
profile is compatible with the equations of motion. It seems suitable to non- 
dimensionalize the Reynolds stress - by the value of the shear stress at the 
wall. Equation (21) can then be transformed into 

- 
vo( u, - U0)/u4 = - q Q 6 : .  (22) 

This equation clearly suggests that (19) is the proper velocity defect law for 
asymptotic layers. 

In  figure 8 the velocity profiles of some asymptotic layers, including one 
measured by the author, are presented in a plot according to (19). These velocity 
profiles apparently can be represented by a single curve, so that asymptotic 
layers are indeed equilibrium layers, which exhibit similarity of velocity profiles 
in the appropriate defect law plot. These velocity profiles apparently do not 
depend on any parameter (not counting the flow in the inner layer), in particular 
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they do not depend on the suction ratio - vo/u, and the skin friction coeEcient 
cf = ~ ( U , / U ~ ) ~ .  The state of equilibrium of these layers may thus be called 
'universal' (cf. Clauser 1956). The velocity profiles of these asymptotic layers 
exhibit extended semi-logarithmic parts, as may be observed in figure 8. The 
slope of the logarithm is equal to the logarithmic velocity scale given by (16), so 
that the hypothetical concept of related similarity laws for the inner and the 
outer layer, with a common velocity scale and semi-logarithmic region of overlap 
is verified experimentally for boundary layers at moderate suction rates. Further 
experimental evidence about non-asymptotic equilibrium layers would be 
welcome. 

It has been indicated in 5 2 that the limit law of the wall is not valid at other 
than moderate suction rates, since at small suction rates the (empirically deter- 
mined) logarithmic velocity scale differs from the one given in (16). However, 
a velocity scale according to  (16), i.e. proportional to u:/vo, is characteristic for 
asymptotic layers. This claim is supported by (259, which does not tolerate a 
different velocity scale if simultaneous similarity of Reynolds stress and mean 
velocity is to be achieved. This means that for asymptotic layers at small suction 
rates the velocity scales for the inner and the outer layers would be different. 
Within the present theory, this must be considered impossible. It is therefore 
concluded that a t  suction rates smaller than -vo/u, = 0-04 approximately, no 
asymptotic layers can exist.? This conclusion is clearly tentative, awaiting 
further experimental and/or theoretical confirmation. 

The limit velocity defect law (19) is supposed to be valid for all turbulent 
equilibrium layers at moderate suction rates, not only for asymptotic layers. 
In  the velocity defect law for an arbitrary equilibrium layer one or more para- 

f In relation to this feature, the similarity laws for boundary layers at moderate suction 
rates have been termed 'limit' similarity laws. 
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meters will occur which characterize the state of equilibrium and which are 
constant in equilibrium flow (Clauser 1956; Rotta 1962). For boundary layers on 
impervious surfaces the pressure gradient parameter II has been introduced, (13). 
This parameter occurs in the momentum integral equation for boundary-layer 
flow. This equation reads, in non-dimensional form, including mass transfer (cf. - 
Black & Sarnecki 1958) 

d(oUi)  - 1 + n +A.  
7 0  

In  this equation, the mass transfer parameter A is defined by 

A = pv0 Uo/r0 = V, V,/U;. (24) 

If II and A are constant, the relative contributions of skin friction, pressure 
gradient and suction or injection to the growth of the momentum deficiency 
OUi of a boundary layer are constant. With this in view, noting also that the use 
of II as equilibrium parameter has received experimental support (Clauser 1956), 
17. and A appear to be a proper set of equilibrium parameters for sucked or blown 
boundary layers. This hypothesis can be checked in the case of asymptotic layers. 
For these layers, which are clearly equilibrium layers, each of the two parameters 
II and A should have a unique value. This is indeed true, since asymptotic layers 
develop in a zero pressure gradient so that IT = 0; and for these layers @Ug is 
constant so that A = - 1 by virtue of (23). The considerations given above lead 
to the following tentative expression for the limit velocity defect law of an 
arbitrary equilibrium layer at a moderate suction rate 

v,( Ul - V,)/U; = G(x2/h';II, A). (25) 

4. The logarithmic velocity scale 
It has been shown that for turbulent boundary layers at moderate suction rates 

the concept of two similarity laws which are related by a common velocity scale 
and a semi-logarithmic velocity profile in a region of overlap is a sound one. 
In  this section, the range of applicability of this concept will be enlarged through 
a further study of the logarithmic velocity scale. 

A formal way to arrive at the logarithmic velocity scale at moderate suction 
rates will first be presented. The analysis runs parallel to the one which has been 
given in 0 1, leading to the definition of w*. Differentiation of the limit law of the 
wall, (13), or (17), and of the limit velocity defect law, (19), or (25), with respect 
to x2 yields 

The expressions on the right-hand side of (26) and (27) are formally independent 
of each other, so that they must be constant in order to be equal in the region of 
overlap. This means that in the region of overlap between the two limit similarity 
laws the velocity profile is semi-logarithmic and that the slope of this region is 
given by 
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The constant G is a ‘universal’ constant since the limit similarity laws (17) and 
(25) have no parameters in common. Experimental evidence supports (28) and 
indicates that C = -0.06; cf. (16). It is observed that the semi-logarithmic 
velocity profiles observed in most experimental data are supported by the theory. 
For boundary layers with suction or blowing outside the range 

0.04 < - v ~ / u ,  < 0.10 

no appropriate similarity laws have so far been found. It is possible to formulate 
those laws by an empirical extension of the concept of a logarithmic velocity 
scale. For each experimentally determined velocity profile which has a semi- 
logarithmic region, the magnitude of w* can be evaluated. It then remains to 
be determined on which variables w* depends. For a solution of this problem, 
the logarithmic velocity scale is non-dimensionalized using u,. Equation ( 10) 
shows that for boundary layers on impervious surfaces 

W*/U, = 2.3. (29) 

Equation (16) shows that within the range of validity of the limit similarity laws 

W*/U, z= - 0 . 0 6 ( ~ , / ~ ~ ) .  (30) 

These equations suggest that w*/u7 is a function of vo/u, only. The logarithmic 
velocity scale, which is based on the relation between two similarity laws, can 
depend only on the variables that occur in both laws. A wall law is characteristi- 
cally independent of U, and its derivatives and of 6; a defect law does not depend 
on the surface roughness k. These considerations also imply that w*/u, depends 
on vo/u, only. 

In  figures 9 and 10 the empirically-determined logarithmic velocity scales of 
a large number of sucked and blown turbulent boundary layers have been 
collected. Also plotted is the hyperbola given by (30). It is observed that these 
data support the claim that w*/u, is a function of vo/u, only. Over a great range 
of values of the suction ratio -vo/u,, including all cases of blown boundary 
layers, the relation between w*/u, and vo/u, is very well approximated by 

w*/u, = 2.3( 1 + ~v,/u,). (31) 

This linear relationship, which has also been plotted in figures 9 and 10, provides 
a sharp contrast with the hyperbolic relationship (30) associated with the limit 
similarity laws. So far, no satisfactory theoretical explanation has been found 
for (31). 

The experimental data show that (30) cannot be used for v,/u, > - 0.04 and 
that (31) cannot be used for vo/u, < - 0.08. In  the range 0.04 < - vo/u, < 0.08 
both curves represent the data reasonably well; however, (30) is preferable, since 
it is associated with the theoretically-supported limit similarity laws. At suction 
ratios larger than -vo/u, = 0.10 approximately, most sucked boundary layers 
revert to laminar flow (cf. Favre et al. 1961) or attain such small values of the 
Reynolds number that the turbulence in the layer is no longer ‘fully devel- 
oped’ (a necessary condition for the existence of separate similarity laws). 
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Therefore, the range of values of vo/u, at  which the limit similarity laws 
may be used has been restricted to the so-called 'moderate' suction rates: 

It has been indicated that (31) is valid also for blown turbulent boundary 
layers. For these layers, Mickley & Smith (1963) derived a velocity scale based 
on the maximum shear stress within the boundary layer. They observed that the 
velocity profiles of blown boundary layers, if non-dimensionalized using up (the 

0.04 < - v ~ / u ,  < 0.10. 
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FIGURE 9. The logarithmic velocity scale. Data: v, Kay (1948); n, Clauser (1956); 
A, Mickley & Davis (1957); 0, Dutton (1958); x , Black & Sarnecki (1958); 0 ,  
Tennekes (1964b). 

- VO/% 
FIGURE 10. Detail of figure 9. 
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square root of the maximum shear stress in the layer), exhibit a semi-logarithmic 
region with the same slope as in the case of boundary layers on impervious 
surfaces. This property is analogous to the main property of scaling with w*, i.e. 
that the slope of the logarithmic velocity profile is unity, whatever the value of 
vo/uT. It is concluded that w* and uf are proportional to each other; more 
specifically that 

This relation provides a physical interpretation of the meaning of w* for blown 
turbulent boundary layers and, using (31), also shows the way in which u: 
depends on vo and u, (this relation was not given by Mickley & Smith). It should 
be noticed that in most sucked boundary layers the shear stress does not attain 
an extremum, so that for negative values of vo/u, the modified friction velocity uf 
cannot be defined following the procedure of Mickley & Smith. However, the 
relation between w* and u: at least indicates that the logarithmic velocity scale 
is related in some manner to the characteristic level of shear stress in the region 
of overlap between the inner and the outer layer. 

The logarithmic velocity scale w* may be used to formulate a more general set 

(32) W* = 2.3~:.  

of similarity laws 

These equations will be called the 'normalized ' similarity laws, By substitution 
of (29), these laws transform into those for turbulent boundary layers on im- 
pervious surfaces; by substitution of (30), the limit similarity laws reappear. 
The normalized similarity laws are designed so that the slope of the semi- 
logarithmic velocity profile is unity, whatever the value of vo/uT (this is the only 
parameter on which the slope depends). It is therefore clear that by varying any 
of the parameters occurring in (33) and (34) the velocity profile can only shift 
parallel to itself. This property should make experimental determination of the 
effects of the various parameters relatively easy. At present, the number of data 
available in the literature is insufficient to deduce the required relations with 
any accuracy. 

To conclude this section, it should be noted that the concept of a logarithmic 
velocity scale may have a far wider range of applicability than sucked and blown 
turbulent boundary layers only. For all turbulent boundary layers which exhibit 
distinct inner and outer layers the logarithmic velocity scale may be determined 
experimentally. Experimental data and/or theory will then show the nature of 
the dependence of w* on variables like heat transfer, compressibility and 
magnetic fields. 

This paper is a condensed version of a thesis with the same title submitted to the 
Technological University of Delft for the degree of Doctor of Technical Sciences. 
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